HARFORD COUNTY PUBLIC SCHOOLS

CLICK HERE for the Maryland College and Career Ready Standards for Algebra 1.

Module 1 Topic 1: Quantities and Relationships

Primary Resource: High School Math Solution Algebra I, ${ }^{\text {st }}$ Ed., Carnegie Learning, 2018.

Enduring Understandings

- Relationships can be described, and generalizations made for mathematical situations that have numbers or objects that repeat in predictable ways.
- Mathematical situations and structures can be translated and represented abstractly using variables, expressions, and equations.
- If two quantities vary proportionally, that relationship can be represented as a linear function.
- Mathematical rules (relations) can be used to assign members of one set to members of another set. A special rule (function) assigns each member of one set to a unique member of the other set.

Essential Questions

- What are the key characteristics of linear, exponential, quadratic, and linear absolute value functions?

| Lesson Title | Lesson Overview | Standards |
| :--- | :--- | :--- | :--- |
| Picture Is Worth a
 Thousand Words | Students identify the independent and dependent quantities for various real-world scenarios, match
 a graph to the scenario, and interpret the scale of the axes. They observe similarities and differences in
 the graphs, and then focus on key characteristics, such as intercepts, increasing and decreasing
 intervals, and relative maximum and minimum points. | A.REI.D.10
 F.IF.A. 1 |
| N.Q.A. 1 | | |

HARFORD COUNTY PUBLIC SCHOOLS

HIGH SCHOOL ALGEBRA 1 (ALTERNATING) CURRICULUM

F of X	Function notation is introduced. The terms increasing function, decreasing function, and constant function are defined. Students sort the graphs from the previous lesson into groups using these terms and match each graph with its appropriate equation written in function notation. The terms function family, linear function, and exponential function are then defined. Next, the terms absolute minimum and absolute maximum are defined. Students sort the remaining graphs into groups using these terms and match each graph with its appropriate equation written in function notation. The terms quadratic function and linear absolute value function are then defined. Linear piecewise functions are defined, and students match the remaining graphs to their appropriate functions. In the final activity, students demonstrate how the families differ with respect to their intercepts.	F.IF.A. 1 F.IF.B. 4 F.IF.B. 5
Function Families for 200, Alex	Given characteristics describing the graphical behavior of specific functions, students name the possible function family/families that fit each description. Students revisit the scenarios and graphs from the first lesson, name the function family associated with each scenario, identify the domain, and describe the graph. Students then write equations and sketch graphs to satisfy a list of characteristics. They conclude by determining that a function or equation, not just a list of characteristics, is required to generate a unique graph.	F.IF.B. 4

HARFORD COUNTY PUBLIC SCHOOLS

Module 1 Topic 2: Sequences

Primary Resource: High School Math Solution Algebra I, 1 ${ }^{\text {st }}$ Ed., Carnegie Learning, 2018.

Enduring Understandings

- Relationships can be described, and generalizations made for mathematical situations that have numbers or objects that repeat in predictable ways.
- Mathematical situations and structures can be translated and represented abstractly using variables, expressions, and equations.
- If two quantities vary proportionally, that relationship can be represented as a linear function.
- Mathematical rules (relations) can be used to assign members of one set to members of another set. A special rule (function) assigns each member of one set to a unique member of the other set.

Essential Questions

- What are the advantages and limitations of using tables, functions, and graphs to solve problems?
- What is the relationship between arithmetic sequences and linear functions and geometric sequences and exponential functions?
- What are the effects that horizontal, vertical, and reflective transformations have on exponential functions?

Lesson Title	Lesson Overview	Standards	
Is There a Pattern Here?	Given ten contexts or geometric patterns, students write a numeric sequence to represent each problem. They represent each sequence as a table of values, state whether each sequence is increasing or decreasing, and describe the sequence using a starting value and operation. They determine that all sequences are functions and have a domain that includes only positive integers. Infinite sequence and finite sequence are defined.	F.BF.A.1a F.IF.A.3 F.IF.B. 5	
	Given 16 numeric sequences, students generate additional terms and describe the rule they used for each sequence. They sort the sequences into groups based upon common characteristics and explain their rationale. The terms arithmetic sequence, common difference, geometric sequence, and common ratio are defined with examples. They then categorize the given sequences based on the definitions and identify the common difference or common ratio where appropriate. Students then practice writing sequences with given characteristics.	F.BF.A. 2	
The Password Is... Operations!			

HARFORD COUNTY PUBLIC SCHOOLS

HIGH SCHOOL ALGEBRA 1 (ALTERNATING) CURRICULUM

| | Scenarios are presented that can be represented by arithmetic and geometric sequences. Students
 determine the value of different terms in each sequence. As the term number increases it becomes
 Recursion? | more time consuming to generate the term value, which sets the stage for explicit formulas to be
 defined and used. Students will practice using these formulas to determine the values of terms in both
 arithmetic and geometric sequences. |
| :--- | :--- | :--- | F.BF.A.1a | Pegs, N Discs |
| :--- | | Students are introduced to the process of mathematical modeling, with each of the four activities |
| :--- |
| representing a specific step in the process. Students are invited to play a puzzle game, observe |
| patterns, and think about a mathematical question. Students then organize their information and |
| pursue a given question by representing the patterns they noticed using mathematical notation. As a |
| third step, students analyze their recursive and explicit formulas and use them to make predictions. |
| Finally, students test their predictions and interpret their results. |\quad F.BF.A. 28.

HARFORD COUNTY PUBLIC SCHOOLS

HIGH SCHOOL ALGEBRA 1 (ALTERNATING) CURRICULUM

Module 1 Topic 3: Linear Regression

Primary Resource: High School Math Solution Algebra I, 1 ${ }^{\text {st }}$ Ed., Carnegie Learning, 2018.
Enduring Understandings

- Relationships can be described, and generalizations made for mathematical situations that have numbers or objects that repeat in predictable ways.
- Mathematical situations and structures can be translated and represented abstractly using variables, expressions, and equations.
- If two quantities vary proportionally, that relationship can be represented as a linear function.
- Mathematical rules (relations) can be used to assign members of one set to members of another set. A special rule (function) assigns each member of one set to a unique member of the other set.
- Data can be represented visually using tables, charts, and graphs. The type of data determines the best choice of visual representation.

Essential Questions

- How is a linear regression line of a data set determined?
- How do you determine if a linear model is a good fit for a data set based upon the residual plot?
- What are the advantages and limitations of using tables, functions, and graphs to solve problems?
- Which form of a linear equation is most appropriate to represent a given problem situation?

| Lesson Title | Lesson Overview | Standards |
| :--- | :--- | :--- | :--- |
| Like a Glove | Students informally approximate a line of best fit for a given data set, write an equation for their line,
 and then use their function to make predictions, learning about interpolation and extrapolation. They
 are then introduced to a formal method to determine the linear regression line of a data set via
 graphing technology. | N.Q.A.3
 S.ID.B.6a
 G.ID.B.6c |
| Gotta Keep It Correlatin' | Students analyze graphs and estimate a reasonable correlation coefficient based on visual evidence.
 They then use technology to determine a linear regression and interpret the correlation coefficient.
 Next, students analyze several problem situations to determine whether correlation is always
 connected to causation. | N.Q.A.3
 S.ID.B.6a
 S.II.B.6c |
| S.ID.C.8 | | |

HARFORD COUNTY PUBLIC SCHOOLS

HIGH SCHOOL ALGEBRA 1 (ALTERNATING) CURRICULUM

\(\left.$$
\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { Students calculate a linear regression for a real-world problem and analyze the correlation coefficient } \\
\text { to conclude whether the linear model is a good fit. The terms residual and residual plot are defined. } \\
\text { Students calculate the residuals, construct a residual scatter plot, and conclude by its shape that there } \\
\text { may be a more appropriate model. They are given a second data plot. Students create a scatter plot and } \\
\text { determine the equation for the least squares regression line and the correlation coefficient with respect } \\
\text { to the problem situation. They then calculate residuals and create a residual plot to conclude how the } \\
\text { data are related. }\end{array} & \begin{array}{l}\text { S.ID.B.6a } \\
\text { S.ID.B. } 6 \mathrm{~b}\end{array}
$$

S.ID.B.6c\end{array}\right]\)| The Fit or Not to Fit? |
| :--- |
| That is the Question! | | Students construct a scatter plot, determine a linear regression equation, compute the correlation |
| :--- |
| coefficient, determine the residuals, and create a residual plot for a data set with one variable. They |
| use all the given information to decide whether a linear model is appropriate. A quadratic function is |
| given, and students conclude that this type of function appears to be a better fit. Finally, students |
| summarize how the shape of a scatter plot, the correlation coefficient, and the residual plot help |
| determine whether a linear model is an appropriate fit for the data set. The lesson emphasizes the |
| importance of using more than one measure to determine if a linear model is a good fit. |\quad| N.Q.A. 3 |
| :--- |
| S.ID.B.6a |
| S.ID.B.6b |
| S.ID.B.6c |

HARFORD COUNTY PUBLIC SCHOOLS

Module 2 Topic 1: Linear Functions

Primary Resource: High School Math Solution Algebra I, 1 ${ }^{\text {st }}$ Ed., Carnegie Learning, 2018.

Enduring Understandings

- Relationships can be described, and generalizations made for mathematical situations that have numbers or objects that repeat in predictable ways.
- Mathematical situations and structures can be translated and represented abstractly using variables, expressions, and equations.
- If two quantities vary proportionally, that relationship can be represented as a linear function.
- Mathematical rules (relations) can be used to assign members of one set to members of another set. A special rule (function) assigns each member of one set to a unique member of the other set.

Essential Questions

- What is the relationship between arithmetic sequences and linear functions and geometric sequences and exponential functions?
- What are the effects that horizontal, vertical, and reflective transformations have on exponential functions?
- Which form of a linear equation is most appropriate to represent a given problem situation?

Lesson Title	Lesson Overview	Standards
Connecting the Dots	This lesson builds from what students know about arithmetic sequences to a general understanding of linear functions. Students connect an arithmetic sequence written in explicit form to a linear function in slop-intercept form. They compare the terms of each equation and prove the common difference and slope are always constant and equal. The First differences method is defined as a strategy to determine whether a table represents a linear relationship. Average rate of change is defined and presented graphically. Finally, students use what they know about arithmetic sequences to complete a graphic organizer to summarize the characteristics and representations of linear functions.	F.IF.A. 1 F.IF.A. 3 F.IF.B. 6 F.LE.A.1a F.LE.A.1b F.LE.A. 2
Fun with Functions, Linear Ones	Students determine whether functions represented as scenarios, equations, or graphs are linear functions. They extend what they learned about first differences to analyze tables with input values that are not consecutive integers. Students then analyze a scenario and graph that can be represented by a function in the form $f(x)=a x$. A new scenario requires an equation of the form $f(x)=a(x-c)$. They analyze the meaning of this shift in the graph in terms of the context and compare the structure to that of $f(x)=a x+b$. The scenario changes a second time, and the students explore an equation in the form $f(x)=a(x-c)+d$.	A.CED.A. 1 A.REI.A. 1 A.SSE.A.1a F.BF.B. 3 F.IF.A. 2 F.IF.B. 4 N.Q.A. 1

HARFORD COUNTY PUBLIC SCHOOLS

HIGH SCHOOL ALGEBRA 1 (ALTERNATING) CURRICULUM

	Students identify key characteristics of several linear functions. A graph and a table of values for the basic linear function $f(x)=x$ are given, and students investigate $f(x)+D$ and $A * f(x)$. Given a function $g(x)$ in terms of $f(x)$, students graph $g(x)$ and describe each transformation on $f(x)$ to produce $g(x)$. Finally, students use their knowledge of linear function transformations to test a video game that uses linear functions to hit targets. Students write the function transformations several ways and identify the domains, ranges, slopes, and y-intercepts of the new functions.	F.BF.B.3 F.IF.B. 4 F.IF.C. 7 a
Comparing Linear Functions in Different Forms	Students compare linear functions represented in different forms to answer questions about real-world scenarios. They also identify the scale and origin on the graph of a function given a situation description. Finally, students generate and compare their own linear functions using tables, graphs, and equations.	F.IF.C. 9
N.Q.A. 1		

HARFORD COUNTY PUBLIC SCHOOLS

Module 2 Topic 2: Solving Linear Equations and Inequalities

Primary Resource: High School Math Solution Algebra I, 1 ${ }^{\text {st }}$ Ed., Carnegie Learning, 2018.

Enduring Understandings

- Relationships can be described, and generalizations made for mathematical situations that have numbers or objects that repeat in predictable ways.
- Mathematical situations and structures can be translated and represented abstractly using variables, expressions, and equations.
- If two quantities vary proportionally, that relationship can be represented as a linear function.
- Mathematical rules (relations) can be used to assign members of one set to members of another set. A special rule (function) assigns each member of one set to a unique member of the other set.
- Rules of arithmetic and algebra can be used together with notions of equivalence to transform equations and inequalities so solutions can be found.

Essential Questions

- How can we use equations and inequalities to solve problems?

| Lesson Title | Lesson Overview | Standards |
| :--- | :--- | :--- | :--- |
| Striking a Balance | Students are given a mathematical sentence that is always true and one that is always false. They
 choose any variable or constraint and use the Properties of Equality to investigate ways to change the
 outcome of the given number sentence. Students reason that the mathematical sentence that is always
 true is still always true and that one that is false is still always false. The terms no solution and
 infinite solutions are defined. Finally, students play Tic-Tac-Bingo as they work together to create
 equations with given solution types from assigned expressions. | A.CED.A. 1
 A.REI.A. 1
 A.REI.B. 3 |
| It's Literally about
 Literal Equations | Students identify the slope and intercepts of functions in general, factored, and standard form. They
 determine the characteristics for the equations $A x+B y=C . T h e y ~ t h e n ~ e x p l a i n ~ w h i c h ~ f o r m ~ i s ~ m o r e ~$
 efficient in determining the slope and the x-and y-intercepts. Next, the term literal equation is
 defined. Students rewrite different literal equations to solve for given variables. | A.CED.A. 4
 N.Q.A. 1 |

HARFORD COUNTY PUBLIC SCHOOLS

HIGH SCHOOL ALGEBRA 1 (ALTERNATING) CURRICULUM

Not All Statements are Made Equal	Students use the graph of a function modeling a scenario with a positive rate of change to determine solutions to linear inequalities. The term "solve an inequality" is defined. Students write and solve two-step inequalities algebraically, choosing the most accurate solution in the context of the problem situation. Students solve linear inequalities for a scenario with a negative rate of change that affects the sign of the inequality. Finally, they solve linear inequalities that require more than two steps to solve.	A.CED.A. 1 A.CED.A. 3 A.REI.B. 3 N.Q.A. 3
Don't Confound Your Compounds	The term compound inequality is defined. Students determine the inequality symbols that complete statements about a scenario represented by compound inequalities and express them in compact form. Given a scenario, they express the inequalities using symbols, then solve and graph the inequalities. The terms solution of a compound inequality, conjunction, and disjunction are defined. Students solve and graph compound inequalities, including those written in compact form.	A.CED.A. 1 A.REI.B. 3 N.Q.A. 3

HARFORD COUNTY PUBLIC SCHOOLS

HIGH SCHOOL ALGEBRA 1 (ALTERNATING) CURRICULUM

Module 2 Topic 3: Systems of Equations and Inequalities

Primary Resource: High School Math Solution Algebra I, 1 ${ }^{\text {st }}$ Ed., Carnegie Learning, 2018.

Enduring Understandings

- Relationships can be described, and generalizations made for mathematical situations that have numbers or objects that repeat in predictable ways.
- Mathematical situations and structures can be translated and represented abstractly using variables, expressions, and equations.
- If two quantities vary proportionally, that relationship can be represented as a linear function
- Mathematical rules (relations) can be used to assign members of one set to members of another set. A special rule (function) assigns each member of one set to a unique member of the other set.
- Rules of arithmetic and algebra can be used together with notions of equivalence to transform equations and inequalities so solutions can be found.

Essential Questions

- Which method is most efficient for solving a given system of equations or inequalities?
- How do you determine whether a system of equations is consistent or inconsistent?

| Lesson Title | Lesson Overview | Standards |
| :---: | :--- | :--- | :--- |
| Double the Fun | Students explore a scenario that can be modeled with a system of linear equations in standard form.
 They graph the equations using the intercepts. They determine the intersection of the lines graphically
 and algebraically using substitution. Finally, students write a system of equations for given scenarios
 and analyze the slopes and y-intercepts and their relevance to the problem situation. They solve each
 system of equations graphically and algebraically, concluding that for any system there is no solution,
 one solution, or an infinite number of solutions. | A.CED.A. 2
 A.REI.C.6
 A.REI.D. 10
 A.REI.D.11
 F.IF.C.7a |
| The Elimination Round | Students explore a system of equations with opposite y-coefficients that is solved for x by adding the
 equations together. The term linear combinations method is defined, and students analyze systems
 that are solved by multiplying either one or both equations by a constant to rewrite the system with a
 single variable. Students analyze different systems of equations to determine how they would rewrite
 the equations to solve for one variable. Next, they apply the linear combinations method to two real-
 world problems, one with fractional coefficients. | A.CED.A. 2
 A.REI.C.5
 A.REI.C.6 |

HARFORD COUNTY PUBLIC SCHOOLS
 HIGH SCHOOL ALGEBRA 1 (ALTERNATING) CURRICULUM

| | Scenarios are used that are represented by two-variable inequalities. Students write the inequality,
 complete a table of values, and use the table of values to graph the situation. The terms half-plane and
 boundary line are defined. Students use shading and solid or dashed lines to indicate which regions
 on the coordinate plane represent solution sets to the problem situation. Multiple representations such
 as equations, tables, and graphs are used to represent inequalities and their solutions. | A.CED.A. 2
 A.CED.A. 3
 A.REI.D. 12 |
| :--- | :--- | :--- | :--- |
| Working the Constraints | The term constraints is defined. Students write a system of linear inequalities to model a scenario,
 and graph the system, determining that overlapping shaded regions identify the possible solutions to
 the system. They practice graphing several systems of inequalities determining the solution set.
 Finally, students match systems, graphs, and possible solutions to systems. | A.CED.A. 3
 A.REI.D.12
 A.REI.C. 6 |
| Working the System | Students write a system of linear equations for each of three different scenarios: one in the form $y=$
 ax $+b$, one in the form $y=a(x-c)+b$, and one in the form $y=a(c x)+b$. They use any method to
 solve the system before reasoning about the solution in terms of the problem context. Students write a
 system composed of four linear inequalities to model a scenario and graph the system. Students
 determine the correct region that contains the solution set that satisfies all the inequalities in the
 system. | A.CED.A. 3
 A.REI.D.12
 A.REI.C.6 |
| | Students are introduced to function notation for two variables and the term linear programming is
 defined. They define variables and identify the constraints as a system of linear inequalities for
 different scenarios. Students then graph the solution region of the system and label all points of
 intersection of the boundary lines, identifying the vertices of the solution region. They write a function
 to represent the profit or cost and substitute each of the four vertices into the equation of the function
 to determine a maximum profit or a minimum cost. | A.CED.A. 3
 A.REI.D.11
 A.REI.D.12
 F.IF.A.2 |
| Min it to the Max... or | | |

HARFORD COUNTY PUBLIC SCHOOLS

Module 3 Topic 1: Introduction to Exponential Functions

Primary Resource: High School Math Solution Algebra I, 1 ${ }^{\text {st }}$ Ed., Carnegie Learning, 2018.

Enduring Understandings

- Relationships can be described, and generalizations made for mathematical situations that have numbers or objects that repeat in predictable ways.
- Mathematical situations and structures can be translated and represented abstractly using variables, expressions, and equations.
- If two quantities vary proportionally, that relationship can be represented as a linear function.
- Mathematical rules (relations) can be used to assign members of one set to members of another set. A special rule (function) assigns each member of one set to a unique member of the other set.
- Rules of arithmetic and algebra can be used together with notions of equivalence to transform equations and inequalities so solutions can be found.
- Objects in space can be transformed in an infinite number of ways, and those transformations can be described, and analyzed mathematically.

Essential Questions

- What is the relationship between arithmetic sequences and linear functions and geometric sequences and exponential functions?
- What are the effects that horizontal, vertical, and reflective transformations have on exponential functions?

Lesson Title	Lesson Overview	Standards
A Constant Ratio	Students learn through investigation that while all geometric sequences are functions, only some geometric sequences can be represented as exponential functions. They identify the constant ratio in different representations of exponential functions and then show algebraically that the constant ratio between output values of an exponential function is represented by the variable b in the function form $f(x)=a b^{x}$. Students also identify the a-value of that form as the y-intercept of the graph of the function. They learn to write an exponential equation from two given points. The lesson concludes with a comparison of the base of the power in the equation $f(x)=a b^{x}$, the expression $(f(x+1)) /(f(x))$, and the common ratio of the corresponding geometric sequence.	A.REI.D. 10 F.BF.A.1a F.LE.A.1a F.LE.A. 2 F.LE.B. 5

HARFORD COUNTY PUBLIC SCHOOLS

HIGH SCHOOL ALGEBRA 1 (ALTERNATING) CURRICULUM

The Power Within	Students explore a scenario that can be represented by the function $f(x)=2^{x}$. They use the rules of exponents and their understanding of a constant ratio to determine output values for the exponential function when the input values are non-integers. Students use this exploration to connect expressions with rational exponents to those in radical notation. Students learn the term horizontal asymptote and explore this concept on different graphs, analyzing end behavior, particularly as the x-values approach negative infinity. Finally, students practice converting between expressions with rational exponents and those in radical notation and make generalizations about the constant ratio for exponential functions.	A.CED.A. 1 A.REI.B. 3 F.IF.C.8b F.LE.A. 2 N.RN.A. 1 N.RN.A. 2 N.RN.B. 3
Now I Know my A, B, C, Ds	Students explore a variety of different transformations of exponential functions, including vertical translations, horizontal translations, vertical reflections and dilations, and horizontal reflections and dilations. For each transformation, students sketch graphs of the transformation, compare characteristics of the transformed graphs with the graph of the parent function, including the horizontal asymptote when appropriate, and write transformations using coordinate notation. They also consider different ways to rewrite and interpret equations of function transformations. Finally, students summarize the effects of different transformations at the end of the lesson.	F.BF.B. 3 F.IF.B. 4 F.IF.C.7e F.IF.C.8b

HARFORD COUNTY PUBLIC SCHOOLS

Module 3 Topic 2: Using Exponential Functions

Primary Resource: High School Math Solution Algebra I, ${ }^{\text {st }}$ Ed., Carnegie Learning, 2018.

Enduring Understandings

- Mathematical situations and structures can be translated and represented abstractly using variables, expressions, and equations.
- Mathematical rules (relations) can be used to assign members of one set to members of another set. A special rule (function) assigns each member of one set to a unique member of the other set.
- Rules of arithmetic and algebra can be used together with notions of equivalence to transform equations and inequalities so solutions can be found.

Essential Questions

- What is the relationship between linear functions and exponential functions?
- What are the effects that horizontal, vertical, and reflective transformations have on exponential functions?

Lesson Title	Lesson Overview	Standards
Uptown and Downtown	Students compare linear and exponential functions in the context of simple interest and compound interest situations. They identify the values in the exponential function equation that indicate whether an exponential function is a growth or decay function, and they apply this reasoning in context.	A.CED.A. 1 A.CED.A. 2 A.REI.D. 10 A.REI.D. 11 A.SSE.B.3c F.IF.C.8b F.LE.B. 5
Powers and the Horizontal Line	Students match exponential equations to their graphs to discern that the horizontal asymptote is always represented by $y=D$. For exponential growth and decay scenarios, students complete tables of values, graph the functions, and write exponential equations using function notation. Students use graphs to estimate the solutions to equations by graphing both sides of the equation and locating the point of intersection. They use the properties of exponents to rewrite the b and B-values of exponential functions in equivalent forms to reveal properties of the quantity represented in the function. This allows them to reinterpret an equation showing annual rates of increase for a mutual fund to show monthly and quarterly rates of increase for the same fund.	A.CED.A. 1 A.CED.A. 2 A.REI.D. 10 A.REI.D. 11 A.SSE.B.3c F.IF.C.8b F.LE.B. 5

HARFORD COUNTY PUBLIC SCHOOLS

HIGH SCHOOL ALGEBRA 1 (ALTERNATING) CURRICULUM

| | Students model two savings scenarios, one by means of an exponential function $f(x)$ and one by a
 constant function $g(x)$. Then they create a third function $h(x)=f(x)+g(x)$, graph all three functions
 Savings, Tea, and
 Carbon Dioxide
 write same graph, and explain how they are related. Given a data set, students create a scatter plot,
 prediction. The lesson concludes with students generalizing about common features of scenarios of a
 are modeled by exponential functions. They also describe the shape of a scatter plot representing an
 exponential function and sketch possible graphs of exponential functions. | F.BF.A.1b
 N.Q.A. 2
 S.ID.B.6a |
| :--- | :--- | :--- | :--- |
| BAC is BAD News | Students are given a context involving the blood alcohol content (BAC) of a driver and the driver's
 likelihood of causing an accident. Students are then given data from a study connecting BAC and the
 relative probability of causing an accident. They apply the relationship from the data to create a model
 predicting the likelihood of a person causing an accident based on their BAC. They summarize their
 learning by writing an article for a newsletter about the seriousness of drinking and driving. The
 lesson concludes with students connecting their process for solving the problem to the steps in the
 mathematical modeling process. | A.REI.B. 3
 A.REI.C. 6
 F.LE.A. 2 |

HARFORD COUNTY PUBLIC SCHOOLS

Module 5 Topic 1: Introduction to Quadratic Equations

Primary Resource: High School Math Solution Algebra I, ${ }^{\text {st }}$ Ed., Carnegie Learning, 2018.
Enduring Understandings

- Mathematical situations and structures can be translated and represented abstractly using variables, expressions, and equations.
- Mathematical rules (relations) can be used to assign members of one set to members of another set. A special rule (function) assigns each member of one set to a unique member of the other set.
- Objects in space can be transformed in an infinite number of ways, and those transformations can be described, and analyzed mathematically.

Essential Questions

- How are domain, range, intervals of increase and decrease, absolute maximum or absolute minimum, symmetry, zeros, and graphical behavior determined for quadratic functions?

Lesson Title	Lesson Overview	Standards
Up and Down or Down and Up	Students are introduced to quadratic functions and their growth pattern through a sequence of pennies. They are then provided with four different contexts that can be modeled by quadratic functions. For each function, students address the key characteristics of the graphs and interpret them in terms of the context. They also compare the domain and range of the functions and the context they represent. The first context involves area and is used to compare and contrast linear and quadratic relationships. The second context involves handshakes and has the student write the function. The third context involves catapulting a pumpkin. Students analyze this function written in general form. The final context involves revenue and demonstrates how a quadratic function can be written as the product of two linear functions.	A.REI.D. 10 A.REI.D. 11 F.IF.B. 4 F.IF.B. 5 F.IF.C.7a
Endless Forms Most Beautiful	Students revisit the four scenarios from the previous lesson to introduce equivalent quadratic equations with different structures to reveal different characteristics of their graphs. They learn that a table of values represents a quadratic function if its second differences are constant. Students analyze the effect of the leading coefficient on whether the parabola opens up or down. They identify the axis of symmetry and vertex for each of the graphs using the equations in each form. Finally, students determine the x - and y-intercepts along with intervals of increase and decrease, using a combination of technology, symmetry, and equations.	A.APR.B. 3 A.SSE.A.1a A.SSE.B.3a F.IF.B. 4 F.IF.B. 6 F.IF.C.7a F.IF.C.8a

HARFORD COUNTY PUBLIC SCHOOLS

HIGH SCHOOL ALGEBRA 1 (ALTERNATING) CURRICULUM

	Students explore a variety of different transformations of quadratic functions, including vertical translations, horizontal translations, vertical dilations and reflections, and horizontal dilations and reflections. For each transformation, students sketch graphs of the transformation, compare characteristics of the transformed graphs with those of the graph of the basic function, and write the transformation using coordinate notation. Students write quadratic equations in vertex form using the coordinates of the vertex and another point on the graph and in factored form using the zeros and another point on the graph.	A.SSE.B.3a F.BF.B.3	
	Students compare quadratic functions in standard form, factored form, and vertex form, then analyze the properties of each form. Students then answer questions to compare linear, quadratic, and exponential functions. They compute average rates of change for the functions across different intervals and then compare the change in the average rates of change across the different intervals. Quadratic equations in different forms are compared by identifying key characteristics of their representations.	A.CED.A. 4 Lose Some, You	F.IF.C.A
Fome			

HARFORD COUNTY PUBLIC SCHOOLS

Module 5 Topic 2: Solving Quadratic Equations

Primary Resource: High School Math Solution Algebra I, 1 ${ }^{\text {st }}$ Ed., Carnegie Learning, 2018.

Enduring Understandings

- Mathematical situations and structures can be translated and represented abstractly using variables, expressions, and equations.
- Mathematical rules (relations) can be used to assign members of one set to members of another set. A special rule (function) assigns each member of one set to a unique member of the other set.
- Objects in space can be transformed in an infinite number of ways, and those transformations can be described, and analyzed mathematically.

Essential Questions

- How are polynomial expressions simplified?
- How are graphing and factoring used to solve quadratic equations?

| Lesson Title | Lesson Overview | Standards |
| :--- | :--- | :--- | :--- |
| This Time with
 Polynomials | Students are introduced to polynomials and identify the terms and coefficients of polynomials.
 Students sort polynomials by the number of terms, rewrite in general form if possible, and identify the
 degree. Students add and subtract polynomial functions algebraically and graphically and then
 determine that polynomials are closed under addition and subtraction. Students use area models and
 the Distributive Property to determine the product of binomials. They explore special products and
 are introduced to the terms difference of two squares and perfect square trinomial. | A.APR.A. 1
 A.SSE.A.1a |
| Solutions More or Less | Students use the Properties of Equality and square roots to solve simple quadratic equations. They
 express solutions in terms of the distance from the axis of symmetry to the parabola. Students identify
 double roots, estimate square roots, and extract perfect roots from the square roots of products. They
 show graphically that a quadratic function is the product of two linear functions with the same zeros.
 Students then use the Zero Product Property to explain that the zeros of a quadratic function are the
 same as the zeros of its linear factors. Finally, they rewrite any quadratic in the form $f(x)=a x^{2}-c$ as
 the product of two linear factors. | A.REI.B. $4 b$
 A.REI.D.10
 A.SSE.A. 2
 A.SSE.B.3a
 N.RN.A. 2 |

HARFORD COUNTY PUBLIC SCHOOLS

Transforming Solutions	Students solve quadratic equations that are squares of binomials, recognizing them as horizontal translations of the function. They use the Properties of Equality and square roots to solve quadratic equations of the form $y=a(x-c)^{2}$ and determine how the dilation affects the solutions. Finally, students solve quadratic functions of the form $y=a(x-c)^{2}+d$ and determine how the translation affects the solutions. Students learn that a quadratic function can have one unique real zero, two real zeros, or no real zeros, and how the number of real zeros relates to the graph of the function.	$\begin{aligned} & \text { N.RN.A. } 2 \\ & \text { A.SSE.A. } 2 \\ & \text { F.BF. } 3 \end{aligned}$
The Missing Link	Students recall how to factor out the GCF from different polynomials. They follow examples to factor quadratic trinomials, first using area models and then recognizing patterns in the coefficients. Students use the Zero Product Property to solve quadratic equations by factoring. They are then introduced to completing the square, a method they can use to convert a quadratic equation given in general form to vertex form. Students complete the square to solve quadratic equations that cannot be solved using other methods.	A.REI.B. 4 a A.SSE.B.3b F.IF.C.8b
Ladies and Gentlemen, the Quadratic Formula!	The first activity focuses on the graphical interpretation of $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ as the distance from ($b / 2 a, 0)$ to each root. Students are introduced to the Quadratic Formula as a method to calculate the solutions to any quadratic equation written in general form. Students use the discriminant to determine the number and type of roots for a given function. Students learn why rational numbers are closed under addition and that the sum or product of a rational number and an irrational number is an irrational number. Students reason about the solution to a function with no x-intercepts. Students practice simplifying expressions with negative roots.	A.REI.B. 4 a A.REI.B.4b A.SSE.A.1b N.RN.A. 2 N.RN.B. 3

HARFORD COUNTY PUBLIC SCHOOLS

Module 5 Topic 3: Applications of Quadratics

Primary Resource: High School Math Solution Algebra I, 1 ${ }^{\text {st }}$ Ed., Carnegie Learning, 2018.

Enduring Understandings

- Mathematical situations and structures can be translated and represented abstractly using variables, expressions, and equations.
- Mathematical rules (relations) can be used to assign members of one set to members of another set. A special rule (function) assigns each member of one set to a unique member of the other set.
- Objects in space can be transformed in an infinite number of ways, and those transformations can be described and analyzed mathematically.
- Rules of arithmetic and algebra can be used together with notions of equivalence to transform equations and inequalities so solutions can be found.

Essential Questions

- What strategies can be used to solve systems of non-linear equations?
- How do you choose the appropriate model to represent real-world data?
- How can real-world situations be modeled by quadratic functions to help solve problems?

Lesson Title	Lesson Overview	Standards	
Ahead of the Curve	Students use the graph of a vertical motion model to approximate the times when an object is at given heights. They identify regions on the graph that are less than or greater than a given height and write a quadratic inequality to represent the situation. Next, students are shown how to solve a quadratic inequality algebraically. They determine the solution set of the inequality by dividing the graph into intervals defined by the roots of the quadratic equation, and then test values in each interval to determine which intervals satisfy the inequality. Finally, with a second scenario, students write the function that represents the situation, sketch a graph of the function, and write and solve a quadratic inequality related to the solution set of the quadratic function.	A.APR.A.1	A.REI.B.4

HARFORD COUNTY PUBLIC SCHOOLS HIGH SCHOOL ALGEBRA 1 (ALTERNATING) CURRICULUM

| | Students are presented with a scenario that can be modeled with a quadratic and a linear equation and
 reason about the intersections of the two equations in the context of the problem. Next, they solve
 systems of equations composed of a linear equation and a quadratic equation algebraically using
 substitution, factoring, and the Quadratic Formula. They then verify the solutions graphically by
 determining the coordinates of the points of intersection. Finally, students solve a system composed
 of two quadratic equations using the same methods. They conclude that a system of equations
 consisting of a linear and a quadratic equation can have one solution, two solutions, or no solutions,
 while a system of two quadratic equations can have one solution, two solutions, no solutions, or
 infinite solutions. | A.CED.A. 2
 A.CED.A.3
 A.REI.C.7
 A.REI.D.11 |
| :--- | :--- | :--- | :--- |
| Model Behavior | Students determine a quadratic regression that best models a table of data. They answer questions and
 make predictions using the regression equation. Students then analyze another data set and determine
 the quadratic regression. | S.ID.B.6a
 F.BF.B.4a
 F.BF.B.4d
 F.IF.C.7b |

HARFORD COUNTY PUBLIC SCHOOLS

HIGH SCHOOL ALGEBRA 1 (ALTERNATING) CURRICULUM

Module 2 Topic 4: Functions Derived from Linear Relationships

Primary Resource: High School Math Solution Algebra I, 1 ${ }^{\text {st }}$ Ed., Carnegie Learning, 2018.
Enduring Understandings

- Relationships can be described and generalizations made for mathematical situations that have numbers or objects that repeat in predictable ways.
- Mathematical situations and structures can be translated and represented abstractly using variables, expressions, and equations.
- If two quantities vary proportionally, that relationship can be represented as a linear function.
- Mathematical rules (relations) can be used to assign members of one set to members of another set. A special rule (function) assigns each member of one set to a unique member of the other set.
- Rules of arithmetic and algebra can be used together with notions of equivalence to transform equations and inequalities so solutions can be found.

Essential Questions

| Lesson Title | Lesson Overview | Standards |
| :--- | :--- | :--- | :--- |
| Putting the V in
 Absolute Value | Students model absolute value functions and their transformations on a human coordinate plane. They
 explore and analyze different transformations of absolute value functions, their graphs, and equations,
 and summarize the effects of these transformations. By transforming absolute value functions,
 students
 distinguish between the effects of changing values inside the argument of the function vs. changing
 values outside the function. | F.BF.B.3 |
| F.IF.C.7b | | |

HARFORD COUNTY PUBLIC SCHOOLS

| | Students create a linear absolute value function to model a scenario and use the graph of the function
 to estimate solutions in the context of the problem situation. They then solve a linear absolute value
 equation algebraically by first rewriting it as two separate linear equations. One equation represents
 the case where the value of the expression inside the absolute value is positive, and the second
 represents the case where it is negative. Students model a scenario with a linear absolute value
 inequality and its corresponding graph. Finally, they solve linear absolute value inequalities
 algebraically by first rewriting them as equivalent compound inequalities. |
| :--- | :--- | :--- |
| I Graph in Pieces | Students develop a piecewise function from a scenario. The terms piecewise function and linear
 piecewise function are defined. They analyze a piecewise graph and write a scenario and piecewise
 function to represent the graph. Students analyze statements that correspond to different pieces of the
 graphed function. They then write a scenario that can be modeled with a piecewise function, graph a
 partner's scenario, and work with their partner to write a piecewise function for each. |
| Ftep.IF.C.7b | |

HARFORD COUNTY PUBLIC SCHOOLS

HIGH SCHOOL ALGEBRA 1 (ALTERNATING) CURRICULUM

Module 4 Topic 1: One-Variable Statistics

Primary Resource: High School Math Solution Algebra I, 1 ${ }^{\text {st }}$ Ed., Carnegie Learning, 2018.

Enduring Understandings

- Choose the best display for a set of data.
- Construct a dot plot, histogram, or box-and-whisker plot to represent the general characteristics of a data set.
- Describe the shape of a data set in terms of symmetry or skew.
- Describe the center of a data set using mean or median.
- Describe the spread of a data set using standard deviation or interquartile range.
- Compare the distributions of two or more data sets in context by analyzing their shapes, centers, and spreads.
- Identify outliers for a given data set.
- Predict the effect an outlier has on the shape, center, and spread of a data set.

Essential Questions

Lesson Title	Lesson Overview	Standards	
Way to Represent!	The statistical process is reviewed. Students analyze a small data set given by creating a dot plot. Next, a much larger data set for the same scenario is presented in a frequency table. Students construct and analyze a histogram for the data. A worked example shows how to use a five-number summary to create a box-and-whisker plot. Students are given two five-number summaries of data comparing the same variable and use them to construct and analyze two box-and-whisker plots. They then write an analysis comparing the two data sets.	S.ID.A. 1 S.ID.A. 2	
	Students are presented with various data displays and predict the location of the mean and median in each display. A worked example presents the formula for calculating the arithmetic mean and introduces students to the formal notation. Students construct a box-and-whisker plot that overlays a given dot plot to analyze the spread of the data points. The term interquartile range (IQR) is introduced, and students calculate the IQR for the same data set. They remove any outliers and reanalyze the IQR of the data set. Next, students compare two new data sets displayed in a table and in box-and-whisker plots, removing possible outliers. They then calculate and interpret the standard deviation to compare three symmetric data sets. At the end of the lesson, students know when and how to use mean and standard deviation vs. mean and IQR to describe the center and spread of a data set.	S.ID.A. 1 S.II.A. 2 S.ID.A. 3	

HARFORD COUNTY PUBLIC SCHOOLS

	Students conclude that when comparing two data sets, if one data set is skewed, then the median and IQR should be used to compare the sets. Next, students are provided with three scenarios that each compare two different data sets. In the each, students are provided with a table comparing two data sets and must decide which measure of center and spread to use in their comparison.	S.ID.A. 1 S.ID.A. 2 S.ID.A. 3

HARFORD COUNTY PUBLIC SCHOOLS

HIGH SCHOOL ALGEBRA 1 (ALTERNATING) CURRICULUM

Module 4 Topic 2: Two-Variable Categorical Data

Primary Resource: High School Math Solution Algebra I, 1 ${ }^{\text {st }}$ Ed., Carnegie Learning, 2018.
Enduring Understandings

- Summarize categorical data for two categories in two-way frequency tables.
- Recognize the differences between joint, marginal, and conditional relative frequencies.
- Calculate relative frequencies including joint, marginal, and conditional relative frequencies.
- Interpret relative frequencies given the context of a data set. - Recognize possible associations and trends in a data set.

Essential Questions

Lesson Title	Lesson Overview	Standards	
It Takes Two	Students differentiate between questions that are answered with numeric data from those answered with categorical data. They are presented with data expressed as categories rather than numerical values. The terms two-way frequency table, frequency distribution, joint frequency, and marginal frequency distribution are defined. Students organize data into a two-way frequency table and create a marginal frequency distribution and bar graphs to answer questions related to the given scenario. Finally, students interpret the data analyzed in the context of the scenario.	S.ID.B.5	
Relatively Speaking	Students construct a relative frequency distribution and marginal relative frequency distribution using data for a scenario. They analyze the distributions and answer questions about the problem situation. Next, students are shown stacked bar graphs that represent the relative frequency distribution in two different ways. They compare the graphs to the tables in the previous activity and explain the advantages of graphing the data each way. Finally, students analyze and interpret the data represented by the stacked bar graphs in terms of the problem situation.	S.ID.B.5	
	Students consider what different joint frequencies in a marginal relative frequency distribution represent. They construct a stacked bar graph and analyze the percentages shown in the graph before the term conditional relative frequency distribution is introduced. Students construct a conditional relative frequency distribution and use it to answer questions related to the given scenario. They construct a second conditional relative frequency distribution in terms of the other variable. Finally, students construct a conditional relative frequency distribution and interpret the data in terms of the problem situation.	S.ID.B.5	
More Condition... or			

HARFORD COUNTY PUBLIC SCHOOLS

HIGH SCHOOL ALGEBRA 1 (ALTERNATING) CURRICULUM

	Students synthesize what they know about analyzing and interpreting two-variable categorical data to make a recommendation in a real-world scenario. They organize a given data set by creating a frequency distribution and a stacked bar graph, and then use conditional relative frequency distributions to determine whether there is an association between the two categories. Students formulate conclusions for specified subsets of the data and use statistics to support their conclusions.	S.ID.B.5

